
Reasoning about Agents and Protocols via Goals and
Commitments

Amit K. Chopra
University of Trento, Italy
chopra@disi.unitn.it

Fabiano Dalpiaz
University of Trento, Italy
dalpiaz@disi.unitn.it

Paolo Giorgini
University of Trento, Italy

paolo.giorgini@disi.unitn.it

John Mylopoulos
University of Trento, Italy

jm@disi.unitn.it

ABSTRACT
This paper seeks to combine two largely independent threads
of multiagent systems research—agent specification and pro-
tocols. We specify agents in terms of goal models (as used in
Tropos). We specify protocols in terms of the commitments
among agents. We illustrate and formalize the semantic re-
lationship between agents and protocols by exploiting the re-
lationship between goals and commitments. Given an agent
specification and a protocol, the semantics helps us perform
two kinds of verification: (1) whether the protocol supports
achieving particular agent goals, and (2) whether the agent’s
specification supports the satisfaction of particular commit-
ments.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

Keywords
Theory, Verification

General Terms
Goals, Commitments, Protocols, Communication, Agent-
Oriented Software Engineering, Compliance

1. INTRODUCTION
Two strands of multiagent systems research have pro-

gressed, for the most part, independently from each other.
One has to do with the specification of individual agents
in terms of cognitive concepts and reasoning about strate-
gies, and so on; the other with the specification of protocols.
The two strands are related: a protocol is the specification
of a multiagent system; a multiagent system is instantiated
when specific agents adopt roles in the protocol. One of the
principal challenges in multiagent systems research is to tie
the specification of individual agents to protocols [8, 11, 16].
This would potentially help answer questions such as if a
protocol is suitable for an agent’s needs, and how an agent
Cite as: Reasoning about agents and protocols via goals and commit-
ments, Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, and John My-
lopoulos, Proc. of 9th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2010), van der Hoek, Kaminka,
Lespérance, Luck and Sen (eds.), May, 10–14, 2010, Toronto, Canada, pp.
����
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

should behave at runtime to meet those needs. This paper
seeks to address this challenge.

Agents are usefully specified in terms of cognitive concepts
such as beliefs, goals, desires, intentions, obligations; these
capture at a high-level the internal decision making of an
agent—its policies, choices, rationale, and so on. Existing
Agent-Oriented Software Engineering (AOSE) methodolo-
gies, agent programming languages, and formal accounts of
agent reasoning employ cognitive concepts for agent speci-
fication but consider communication (protocols) in terms of
data and control flow abstractions—for example, using no-
tations such as UML sequence diagrams. Giving short shrift
to communication means giving short shrift to the specifica-
tion of multiagent systems.

Goals represent an important cognitive abstraction for
agent specification. This paper adopts goal models as spec-
ified in Tropos [5] as representative of agent specifications.
In contrast to existing approaches, our approach uses com-
mitment protocols as a high-level abstraction for interaction
[23] (referred to as simply protocols from now on). A proto-
col consists of messages along with their meanings in terms
of commitments. Commitments are binding in a sociole-
gal way: failure to satisfy the commitment is noncompli-
ance with the protocol and often results in the imposition
of penalties.

The relation between goals and commitments is the follow-
ing. An agent has certain goals that it wants to satisfy, and
in doing so it typically must make (to others) or get (from
others) commitments about certain goals. Given their au-
tonomy, an agent cannot force another to adopt or satisfy a
goal; given their heterogeneity, an agent ideally should not
make assumptions about the goals of others. Thus, in gen-
eral, agents can do no better than deal in commitments to
achieve goals they cannot themselves achieve in isolation.

Given the above, an agent’s designer (or perhaps the agent
itself at runtime) would naturally want to verify if a particu-
lar protocol were suitable for the achievement of the agent’s
goals. He would also want to verify that if an agent makes
a certain commitment, then the agent’s specification is such
that it supports fulfillment of the commitment. Let’s con-
sider some simple examples to illuminate our purpose.

Consider a purchase protocol with the roles merchant and
customer. The protocol specifies that an offer message from
the merchant to the customer means a commitment from the
merchant to the customer that if the customer has paid, then
the merchant will deliver the goods. Consider that Rob plays
merchant. If Rob sends such a message to some customer,

457

457-464

then irrespective of Rob’s and the customer’s internal design,
the commitment to the customer holds. It would be prudent
to verify a priori that Rob can fulfill the commitment by
sending the item to the customer.

Also, consider that another agent Alice has the goal of
purchasing something—she plays the role of customer in the
above protocol. It is important to verify that Alice can bring
about payment, else she most likely (unless the merchant is
benevolent) will not be able to take advantage of the mer-
chant’s commitment.

Notice how the notion of compliance with a protocol helps
decouple one agent’s specification from another agent’s. All
Alice wants is a commitment from some merchant that it
will deliver the goods. In other words, if an agent commits
to another for something, from the perspective of the latter,
it does not matter much what the former’s goals are or how
the former will act to bring about the goal he committed to.

Our primary contribution in this paper is that we for-
malize the semantic relationship between an agent specifica-
tion—in terms of goals—and protocols—in terms of com-
mitments. This helps us verify an agent specification with
respect to protocols.

This work is motivated by AOSE frameworks such as Tro-
pos [5], where design begins with stakeholder goals and pro-
ceeds through a refinement process to identify and charac-
terize alternative designs (plans) that can fulfill these goals.
The Tropos framework has been formalized for goals and
their refinements [19], but not for goal fulfillment in a mul-
tiagent setting where commitments form the primary vehicle
for goal fulfillment. We have striven to keep our proposal
generic so that it applies not only to Tropos but also other
frameworks where there is a need to reason with a collection
of agents along with their goals and commitments.

The rest of the paper is organized as follows. Section 2
delineates our conceptual model in terms of agent specifi-
cations and protocols: it gives some background, highlights
the relationship between them, and introduces the syntax
for them. Section 3 motivates the kinds of reasoning we
want to perform with examples; it illustrates the subtleties
of our approach. Section 4 introduces the formal semantics,
and illustrates its applications on some examples introduced
earlier. Section 5 concludes the paper with the discussion of
related work.

2. CONCEPTUAL MODEL
The principal elements of our framework are agent speci-

fications understood in terms of goals and protocols under-
stood in terms of commitments. In this section, we present
some background regarding these concepts, and motivate
the need to understand them in a common framework.

2.1 Protocols
A protocol is a specification of interaction among agents.

A protocol specifies the messages exchanged and how they
affect the commitments among the agents [23]. We distin-
guish protocols from choreographies; choreographies specify
only the ordering among the messages exchanged without
consideration of their meaning in terms of commitments.

A commitment C(Debtor, Creditor, antecedent, consequent)
means that the debtor is committed to the creditor for the
consequent if the antecedent holds. A commitment is made
in a certain sociolegal context and represents a contractual
relationship between the debtor and the creditor. A com-

mitment is discharged when its consequent is achieved; it is
detached when the antecedent holds. An unconditional com-
mitment is one where the antecedent is � (true). A commit-
ment can be created, released, canceled, delegated, assigned.

A protocol is specified in terms of roles; at runtime, agents
would adopt roles in the protocol. For instance, a purchase
protocol may specify that the message Offer from Merchant
to Customer means C(Merchant, Customer, paid, delivered)—
the Merchant commits to the Customer that if the payment
is made, then the goods will be delivered. When paid holds,
the above commitment is detached causing C(Merchant,
Customer,�,delivered) to hold. When delivered holds, the
Merchant’s commitment is discharged.

Instead of specifying protocols in terms of domain specific
messages and their meanings in terms of commitments, we
assume standard messages pertaining to the commitment
operations [7]. For example, Offer and its meaning could be
captured by the message Create(Merchant, Customer, paid,

delivered). Thus, upon sending the create message, the mer-
chant infers C(Merchant, Customer, paid, delivered); upon re-
ceiving the message the customer also infers it. We use De-
clare messages to model the bringing about of propositions
such as paid and delivered; for example Declare(Customer,
Merchant, paid) is a message from the customer to the mer-
chant. Traditional protocol specifications also include mes-
sages for making request for commitments; we model these
via Request messages. We will use these messages in Sec-
tion 4 to demonstrate how an agent may reason about com-
munication. We do not consider the other commitment op-
erations in this paper.

Table 1 shows a protocol specification involving four roles:
Merchant, Customer, Bank, and Shipper. Messages need not
be specified since they are assumed standard (as discussed
above). Interestingly, the protocol does not contain any or-
dering constraints; this reflects new results concerning con-
current updates to commitments [7].

cC: C(Merchant, Customer, paid, delivered)
cB: C(Bank, Merchant, paid, confirmed)
cS: C(Shipper, Merchant, paidShipping, delivered)

Table 1: A protocol depicting a PURCHASE scenario
(the labels are for reference purposes)

It is important to dwell on what the protocol specification
of Table 1 says. It simply says that the agents that adopt
roles in this protocol are willing (read likely) to engage via
the stated commitments. The protocol does not imply that
by simply adopting roles in this protocol, the agents will,
or even have to, become committed as stated. The commit-
ments themselves would come about at runtime via exchange
of messages; whether an agent sends a particular message is
solely its own decision. Presumably, protocols specifications
will be available from a repository. If an agent wants to
play Merchant, and it finds the commitments pertaining to
the role appropriate to its needs, it may adopt the role.

We now introduce protocols formally. In the following, x,
y, etc. are agents; ψ is a finite set of propositional symbols;
α, α0, β, β0 etc. are symbols in ψ; � and ⊥ are the constants
for truth and falsity, respectively; ∧, ∨, ¬, and → are the
standard propositional connectives; p, q, etc. are proposi-
tions over ψ using the connectives; |= and � denote standard
propositional entailment and deduction, respectively.

458

A commitment is a formula of the form C(x, y, p, q). Def-
inition 1 expresses a deductive strength relation between
commitments [7].

Definition 1. C(x, y, r, u) is stronger than C(x, y, s, v),
denoted by C(x, y, r, u) 	 C(x, y, s, v), iff s |= r and u |= v.

Thus, for example (assuming uniform debtors and cred-
itors), C($10, shoes ∧ socks) 	 C($10, socks) (stronger be-
cause the debtor promises more in return for the same price);
C($10∨coupon, shoes) 	 C($10, shoes) (stronger because the
debtor offers more ways of obtaining shoes); C($10, shoes) 	
C($10∧coupon, shoes) (stronger because the debtor imposes
fewer conditions for obtaining shoes); and C($10, shoes) 	
C($10, shoes∨socks) (stronger because the debtor offers with
more certainty).

Definition 2 distinguishes between a protocol specification
and the effective protocol induced from it.

Definition 2. A protocol specification Π is a finite set
of commitments. Π∗ is Π closed under 	; we refer to Π∗ as
the effective protocol specification.

The effective protocol represents all the commitments that
may actually come about, and is in effect the protocol. We
consider the effective protocol based on the reasonable as-
sumption that if a debtor were willing to make some com-
mitment, then it would have no problem making a weaker
commitment. For example, assume a merchant is willing
to make the commitment C($10, shoes ∧ socks); it would
be reasonable to assume that he’d also be willing to make
just C($10, shoes). The consideration of the closure un-
der 	 may be viewed as a kind of normalization for pro-
tocol specifications: the sets {C($10, shoes ∧ socks)} and
{C($10, shoes ∧ socks), C($10, shoes)} yield the same proto-
col.

2.2 Goals
Goals represent the motivational component of agent rea-

soning, and have been extensively applied in both multia-
gent systems and requirements engineering. For the pur-
poses of this paper, we apply goals as have been applied
extensively in AOSE, especially in Tropos [5], an influential
AOSE methodology.

Following Tropos, we represent stakeholders as agents,
and the stakeholders’ goals are identified with the respective
agents’ goals. The goals of the agents are analyzed and mod-
eled using goal decomposition, which involves understand-
ing goals in a structural manner, and contributions, which
involves understanding the impact of goals on each other.
Decomposition is of two types. An AND decomposition
of a goal into constituents means that all constituent goals
have to be achieved to achieve the goal. An OR decompo-
sition means that at least one constituent must be achieved
to achieve the goal. Following [19], contributions between
goals in Tropos are of the following four types. ++S(g, g′)
means that achieving g achieves g′; −−S(g, g′) means that
achieving g denies the achievement of g′; ++D(g, g′) means
denying the achievement of g denies the achievement g′;
−−D(g, g′) means that denying the achievement of g achieves
g′. An agent may have the capability to achieve some goals
itself; for others, it has to depend on others.

Below, we formally introduce the goal models our frame-
work supports.

Syn1. G
AND
−−−→ α, where G ⊆ ψ and G is not empty.

It means that achieving all the goals represented by
each of the symbols in G is a way of achieving α.

Syn2. G
OR
−−→ α, where G ⊆ ψ and G is not empty.

It means that achieving a goal represented by one
of the symbols in G is a way of achieving α.

Syn3. α → β, equivalent to ++S(α, β).

Syn4. α → ¬β, equivalent to −−S(α, β)

Syn5. ¬α → β, equivalent to −−D(α, β)

Syn6. ¬α → ¬β, equivalent to ++D(α, β)

An agent’s goal model consists of zero or more statements,
each conforming to one of the schemas Syn1–Syn6. In ad-
dition, all the symbols in ψ are implicitly in the goal model
(possibly undecomposed). The idea is that ψ represents all
the goals that an agent is interested in; queries about partic-
ular goals represent those to be considered for achievement.

We impose the syntactic restriction on goal models that
there are no cyclic decompositions; such a goal model would
not make any sense. Thus, for example, if α is decomposed
(AND or OR) into α0 (among other goals), then α0 cannot
be decomposed into α (among other goals).

An agent’s capability set C is a subset of ψ: the agent has
the capability for some goal α if and only if α belongs to the
set.

Table 2 shows an agent Rob’s goal model. Rob’s goal is to
sell books (sold). The sell books goal is AND-decomposed
into goals receiving payment (receivedPayment) and shipping
(shipped) the books. The goal receivedPayment is AND-
decomposed into getting the payment (paid) and getting a
confirmation for the payment (confirmed). shipped is AND-
decomposed into paying for the shipping (paidShipping) and
delivering the books (delivered). Rob has the capability to
pay for the shipping, that is, to achieve paidShipping.

a0: {receivedPayment, shipped}
AND
−−−−→ sold;

a1: {paid, confirmed}
AND
−−−−→ receivedPayment;

a2: {paidShipping, delivered}
AND
−−−−→ shipped;

C = {paidShipping}

Table 2: Rob’s goal model specification; the prefixes
ai are for reference purposes

It is important to understand the difference between de-
composition and contribution. Decomposition takes into ac-
count intentionality on part of the agent; contribution does

not. Let’s say {α, β}
AND
−−−→ γ. Achieving α and β does not

achieve γ—unless one achieved them both intentionally in
order to achieve γ. However, α∧β → γ disposes with inten-
tionality; it simply says that if α and β are achieved, it means
that γ is achieved too. Moreover, one cannot take into ac-
count contributions from those goals that are not already
part of some decomposition. In other words, contributions
are treated as side-effects. Thus, for example, if an agent’s
goal is α, and β → α, then achieving β does not constitute
a way to achieve α, unless β is also a goal that the agent
wants to achieve anyway. Example 1 illustrates this.

Example 1. To bake cookies, an agent will intentionally
turn on the oven; as a side-effect the temperature in the room

459

will increase. However, to increase the room temperature,
the agent won’t turn on the oven.

3. CONNECTING AGENT SPECIFICATIONS
WITH PROTOCOLS

An agent’s goal model is a specification 〈G,C〉 such that
G is a set of statements of the form Syn1–Syn6, and C is
the set of capabilities.

We formalize the notion of an agent adopting a role in a
protocol. Let ρ be a role in a protocol Π that x wants to
adopt. Π.ρ(x) is the protocol Π except that x is bound to
role ρ in Π: wherever ρ occurs in the protocol, it is replaced
by x. Π∗.ρ(x) is the corresponding effective protocol. We
refer to the triple 〈〈G,C〉x, Π.ρ(x)〉 as x’s protocol-bound
specification.

If an agent wants to achieve a certain goal, but does
not have the capability for it, then the only way to pos-
sibly achieve it is by interacting with others. This leads to
the formulation of the problem this paper addresses: given
an agent’s protocol-bound specification and a goal query, we
want to verify if the protocol supports achieving the goals
represented by the query. This verification is ideally done a
priori, that is, before enacting the protocol. This verifica-
tion may be done by the agent designer or at runtime by the
agent itself.

Consider Rob as specified in Table 2; let’s say we want to
verify that Rob playing Merchant in PURCHASE (as specified
in Table 1) supports his goal sold, in other words, whether
〈〈G, C〉Rob , Π.Merchant(Rob)〉 supports sold. The goal sold
is decomposed into leaf-level goals: paid, confirmed, delivered,
paidShipping. Rob has no capability to bring about paid,
confirmed, delivered; he has capability to bring about paid-
Shipping. Rob can make a commitment to some customer for
delivered if the customer pays, thus supporting paid with cC.
He hopes to get a commitment from the bank upon request—
he can no more than hope as the bank is autonomous—that
it will send him confirmation, thus bringing about confirmed
if he notifies the bank of payment. In this manner, he sup-
ports confirmed via cB. He hopes to get a commitment from
the shipper that books will be delivered if he pays for the
shipment (paidShipping, for which he has the capability),
thus supporting delivered via cS. Thus, all leaf-level goals are
supported, which means that 〈〈G,C〉Rob , Π.Merchant(Rob)〉
supports sold.

The above is illustrative of the reasoning we wish to for-
malize, but it is a simple example. In general, an agent’s
protocol-bound specification may not support the achieve-
ment of certain goals. This may be because the protocol is
too weak to support the agent’s goal or because of conflicts
arising from the consideration of certain goals.

Below we introduce some intuitions about reasoning with
protocol-bound specifications with the help of examples. In
Section 4 we will formalize these intuitions. We distinguish
between two primary modes of reasoning: exploiting com-
mitments for goal support and exploiting goals for commit-
ment support. The latter relates to compliance with proto-
cols.

3.1 Exploiting commitments for goal support
Given an agent’s protocol-bound specification and a set of

goals from the model that are being considered for achieve-
ment, we would want to make sure that the protocol sup-

ports achieving those goals.
Commitments can support goals in two primary ways.

Consider an agent x. To achieve a goal g, x can play the
debtor in a commitment: x commits to another agent y that
if y brings about g, then x will achieve some other goal g′ for
y. In other words, C(x, y, g, g′) supports x’s goal g. We refer
to this way of exploiting commitments antecedent support.
Example 2 illustrates this notion.

Example 2. cC supports Rob’s goal paid.

Alternatively, to achieve g, x could play the creditor in a
commitment: x hopes that some other agent y would com-
mit to x that if x brings about some goal g′, then y will
bring about g for x. However, there is a slight caveat here:
y is unlikely to bring about g unless x achieves g′. In other
words, C(y, x, g′, g) supports x’s goal g only if x can achieve
g′. We refer to this way of exploiting commitment conse-
quent support. Example 3 illustrates this notion. In the
examples below, we assume that agents are bound to Mer-
chant in PURCHASE unless otherwise specified.

Example 3. cS supports Rob’s goal delivered because Rob
has the capability to bring about the antecedent paidShipping.

Example 4 is a special case of consequent support where
the antecedent itself is supported by a commitment from
another agent. An agent can take advantage of such com-
mitments when it lacks the capability for the antecedent.
The example highlights the open nature of multiagent sys-
tems.

Example 4. cB supports Rob’s goal confirmed. Although
Rob does not have the capability for paid, paid is antecedent-
supported by cC.

If a commitment’s antecedent is stronger than an agent
can support, then that commitment cannot support a goal.
Example 5 shows this.

Example 5. Suppose cS is replaced by cS INS = C(Shipper,
Merchant, paidShipping∧paidInsurance, delivered) in the spec-
ification of PURCHASE in Table 1. Then, Rob cannot ex-
ploit cS INS to support sold: he does not have the capability
for paidInsurance.

In general, we are interested in knowing if an agent can
achieve certain goals together. Example 6 shows how query-
ing for conjunctive goals may lead to a conflict.

Example 6. Suppose Rob’s goal model specification is aug-
mented with a goal taxEvaded along with the contribution
confirmed → ¬taxEvaded. In other words, getting confir-
mation of transactions from a bank implies that Rob cannot
evade tax (presumably because of accounting regulations im-
posed by the government). Therefore, the conjunctive goal
sold ∧ taxEvaded is not supported.

There is a caveat in antecedent support: achieving the an-
tecedent might deny some other goal. Example 7 highlights
this.

Example 7. Consider that in PURCHASE, cC is replaced
by cC REG = C(Merchant, Customer, paid∧registered, delivered).
Also suppose Rob has two additional goals registered and

460

bookkeepingEliminated, and that that achieving registered de-
nies bookkeepingEliminated. Suppose, we query whether sold
∧ bookkeepingEliminated. The answer is negative—to sup-
port delivered, registered needs to be supported (antecedent
support as discussed above); however registered denies goal
bookkeepingEliminated.

a0; a1; a2; a3: {testDone, projectDone}
OR
−−→ passed;

a4; projectDone → ¬delivered;

C = {projectDone, paidShipping}

Table 3: Sam’s goal model and capability specifica-
tion. a0–a2 are from Table 2

There might be more than one way to achieve a particular
goal. Example 8 shows how alternatives may be exploited
to support goals.

Example 8. Consider an agent Sam, whose goal model is
similar to Rob’s, except for an additional goal exam passed.
Table 3 shows Sam’s goal model specification. The achieve-
ment of goal projectDone is time consuming and leaves him
little time to deal with shippers; as such it contributes neg-
atively to the achievement of delivered (a4). Sam has the
capability for projectDone, but not for testDone. Suppose we
want to verify whether playing Merchant in PURCHASE sup-
ports Sam’s conjunctive goal: sold ∧ passed. The answer is
no—projectDone denies delivered. However, if Sam also had
the capability for testDone, instead of doing the project, Sam
could choose to take the test to pass the exam; then both sold
and passed would be supported.

3.2 Exploiting goals for commitment support
This relates to compliance with commitments; that is, the

fulfillment of commitments. For any commitment that an
agent could possibly make, it makes sense to verify that
the agent supports the fulfillment of the commitment. This
means checking for commitment support reduces to check-
ing for support of the consequent of the commitment. Ex-
ample 9 illustrates this notion.

Example 9. Consider Rob from Table 2 playing Merchant
in PURCHASE. Rob’s designer would want to be sure that
Rob’s commitment cC is supported—that he would be able to
bring about delivered. In Rob’s case, delivered is supported
by another commitment cS—he can achieve paidShipping and
hopes that the shipper will bring about the consequent.

It is important to note that the reasoning highlighted in
Example 9 does not guarantee compliance—that at runtime,
Rob will fulfill such a commitment. Many things could go
wrong at runtime: Rob could fail or act in error, the com-
munication infrastructure might fail, or, more pertinently,
Rob might be relying on the fulfillment of some other com-
mitment (such as from the supplier of the item) and that
commitment might go unfulfilled. Compliance with commit-
ments, in any reasonably complex multiagent system, can
only be determined at runtime. What we want to accom-
plish here is to verify that an agent is correctly designed
modulo all that is not under its control.

Example 10 shows an example where a commitment is not
supported.

Example 10. Consider Sam from Table 3 playing role
Merchant in PURCHASE. Consider the fulfillment of cC;
Sam can fulfill it by bringing about delivered. Let’s say he
wants to pass the exam as well (passed). To pass the exam,
Sam can achieve projectDone; however that negatively con-
tributes to delivered. Thus, in this example fulfillment of cC

is not supported.

4. SEMANTICS
We now describe a semantics that ties the reasoning about

goals with commitments; it generalizes the intuitions pre-
sented in Section 3. Throughout this section, we use the
term “specification” to refer to an agent’s protocol-bound
specification. Definition 3 formalizes the notion of an inter-
pretation.

Definition 3. An interpretation I is an assignment of
truth values (� or ⊥) to all symbols in ψ.

Let ψ = {α, β}; there are four possible interpretations
corresponding to the different truth assignments to α and
β. We can equivalently write the interpretation as formulas;
for example, I0 = {α = �, β = �} is the formula α∧β, and
I1 = {α = �, β = ⊥} is α ∧ ¬β.

〈〈G,C〉x, Π.ρ(x)〉||=I p signifies that the protocol-bound
specification of x supports achieving p under the interpre-
tation I. (Below, we use y as a variable over roles.) GC

denotes the statements in G conforming to Schemas Syn3–
Syn6 (the contributions). The relation ||=I is computed
according to the rules Sem1–Sem5.

Sem1. 〈〈G, C〉x, Π.ρ(x)〉||=I �

Sem2. 〈〈G, C〉x, Π.ρ(x)〉||=I α if and only if GC∪I �|= ¬α,
and:

(i.) α ∈ C, or

(ii.) G
AND
−−−→ α ∈ G

∀g ∈ G : 〈〈G,C〉x, Π.ρ(x)〉||=I
g, or

(iii.) G
OR
−−→ α ∈ G

∃g ∈ G : 〈〈G,C〉x, Π.ρ(x)〉||=I
g, or

(iv.) ∃C(y, x, s, α) ∈ Π∗.ρ(x) such that

〈〈G,C〉x, Π.ρ(x)〉||=I
s, or

(v.) ∃C(x, y, s, u) ∈ Π∗.ρ(x) such that s |= α

Sem3. 〈〈G, C〉x, Π.ρ(x)〉||=I q ∨ r if and only if

(i.) 〈〈G, C〉x, Π.ρ(x)〉||=I q or 〈〈G,C〉x, Π.ρ(x)〉||=I r, or

(ii.) ∃C(y, x, s, q ∨ r) ∈ Π∗.ρ(x) such that

〈〈G,C〉x, Π.ρ(x)〉||=I
s and GC ∪ I �|= ¬(q ∨ r)

Sem4. 〈〈G, C〉x, Π.ρ(x)〉||=I q ∧ r if and only if

〈〈G, C〉x, Π.ρ(x)〉||=I
q and 〈〈G,C〉x, Π.ρ(x)〉||=I

r

Sem5. 〈〈G, C〉x, Π.ρ(x)〉||=I ¬q if and only if

〈〈G, C〉x, Π.ρ(x)〉|�|=I
q

461

Sem1 says that all specifications model � under any in-
terpretation.

Sem2 says that an agent’s specification supports a symbol
under an interpretation if and only if the constraints do not
derive a contradiction (considering the contributions), and
one of the following conditions holds (with numbers corre-
sponding to those in Sem2).

(i.) The symbol belongs to the capabilities, meaning that
the agent can bring it about itself.

(ii.) There is an AND-decomposition of the symbol such
that the specification supports each constituent of the
decomposition under the interpretation.

(iii.) There is an OR-decomposition of the symbol such that
the specification supports at least one constituent of
the decomposition under the interpretation.

(iv.) There exists a commitment to the agent for the atomic
proposition, and the specification supports its anteced-
ent under the interpretation.

(v.) There exists a commitment from the agent to some
other that if the other agent brings about a proposition
that entails the atomic proposition.

Sem3 handles the case of a disjunctive goal. It describes
two ways of supporting such a goal.

(i.) One of the disjuncts is supported.

(ii.) There is a commitment to the agent for the disjunctive
goal such that the antecedent can be supported, and
GC∪I does not derive the negation of the disjunction.

Sem4 handles the case of a conjunctive goal. A conjunc-
tive goal is supported if and only if the conjuncts are sup-
ported.

Sem5 says that a negated goal proposition is supported if
and only if the nonnegated goal proposition is not supported.

Let’s pay closer attention to clauses Sem2(iv.) and (v.)
with respect to compliance. Sem2(iv.) refers to a commit-
ment from another role y; so the question of x being com-
pliant with the commitment does not arise. Agent x could
worry about y’s compliance; however, y’s construction is
opaque to x (as would be in any open system). Sem2(v.)
refers to a commitment from x; however, even there we do
not check whether the specification supports x’s compliance
with the commitment. The reason we don’t do it in (v.)
is to enable modular reasoning. While some agents would
be prudent enough to check for compliance support, there
may be reckless agents who are interested in satisfying their
own goals, but not their commitments to others. Hence, we
define commitment support separately in Definition 4.

Definition 4. An agent x with protocol-bound specifica-
tion 〈〈G, C〉x, Π.ρ(x)〉 satisfies commitment C(x, y, r, u) if
and only if 〈〈G,C〉x, Π.ρ(x)〉||=I u

Thus, given an interpretation, a designer may check for
the support of a commitment by simply querying for the
consequent of the commitment. In the query, he may also
include other goals if needed (including those considered for
the fulfillment of other commitments).

4.1 Applying the semantics
Let’s see now how the semantics applies to some queries

concerning agent Sam as specified in Table 3.

Query 1. Can Sam support goal sold while playing role
Merchant?

Let’s consider I = {sold, receivedPayment, shipped, paid,
confirmed, paidShipping, delivered} (only symbols with valu-
ation � are shown in the interpretation). We ask whether
〈〈G,C〉Sam, Π.ρ(Sam)〉||=I sold. Goal sold is a symbol, so
Sem2 applies. We check whether GC∪I contradicts sold—it
does not. Clause (i.) cannot be used as Sam is not capable
of sold; (iii.) does not apply since the goal is not OR de-
composed; neither (iv.) or (v.) apply as there is no suitable
commitment in Π∗.ρ(Sam). Clause (ii.) applies though; so
we recursively check for each of the goals receivedPayment
and shipped. Let’s consider receivedPayment first. Again,
Sem2 applies. receivedPayment is not contradicted, and
(ii.) applies. So we recursively check for each of the goals
paid and confirmed. Again, Sem2 applies to each; neither
is contradicted. By Sem2(v.), paid is supported by Sam’s
commitment cC. By Sem2 (iv.), we get that confirmed is
supported by cB; however we must recursively check to see
if the antecedent paid of cB is supported, which already is.
Thus, receivedPayment is supported. Let’s consider shipped
now. Again, Sem2 applies: shipped is not contradicted, and
(ii.) applies. So we recursively check for each of the goals
paidShipping and delivered. Again, Sem2 applies to each;
neither is contradicted. By Sem2(i.), paidShipping is sup-
ported, since Sam has the capability for it. By Sem2 (iv.),
we get that delivered is supported by cS; however, we must
recursively check to see if the antecedent paidShipping is sup-
ported, which already is. Thus, shipped is supported. And
thus, sold is supported.

Query 2. Can Sam support goals sold∧passed while play-
ing role Merchant?

Let’s try with I′ = {sold, receivedPayment, shipped, paid,
confirmed, paidShipping, delivered, passed, projectDone}. An-
swering this query amounts to the following:

〈〈G,C〉Sam, Π.ρ(Sam)〉| |=I
′

sold ∧ passed. The query is a
goal conjunction; therefore, Sem4 applies and we recur-
sively check each conjunct (sold and passed). Goal sold is
reasoned about as shown above, except that when applying
Sem2 to delivered, we derive a contradiction. Indeed, goal
projectDone is true in I′ and statement a4 in Table 3 is the
conflict source. Hence, sold ∧ passed are not supported.

Let’s try with another interpretation where projectDone is
false: I′′ = {sold, receivedPayment, shipped, paid, confirmed,
paidShipping, delivered, passed, testDone}. Sem4 applies and
tells to check I′′ for sold and passed. Let’s start with passed.
Sem2 (iii.) applies, since passed is OR-decomposed to test-
Done and projectDone. The constraints do not contradict
passed, thus we check whether I′′ supports at least one sub-
goal. Let’s try testDone; it is not denied by GC ∪ I′′, but
no sub-clause of Sem2 is applicable. Thus, let’s test pro-
jectDone. Unfortunately, projectDone is contradicted—it is
not in I′′. Therefore, I′′ does not support the queried goal
proposition.

In order to answer the query, we should try all possible in-
terpretations. None of those would support the query, mean-
ing that Sam cannot support the goal query.

462

4.2 Enactment
So far, we have talked about goals being supported; let’s

see how an agent would actually communicate to achieve
its goals. Figure 1 explicitly shows a possible enactment
for Rob—as specified in Table 2—playing Merchant in PUR-
CHASE using an interaction diagram, and is annotated with
commitments at the points agents send and receive mes-
sages. cUB, cUC, and cUS are the unconditional commitments
corresponding to cB, cC,cS, respectively. Arrows with empty
heads represent those messages that Rob has no control over;
those with filled heads represent messages Rob can send any-
time. Thus, for example, Declare(paidShipping) has a filled
arrowhead; however, Declare(paid), Declare(delivered), De-
clare(confirmed) have empty arrowheads. The figure high-
lights the fact that a priori we can only verify whether
Rob’s goals are supported; if the agents playing the other
roles act in a way conducive to Rob’s goals, only then Rob
can achieve his goals. For example, Rob can request the
bank for cB; however, there is no guarantee that the bank
will create such a commitment. Similarly, Rob can pay the
shipper, however there is no guarantee that the shipper will
deliver. However, in the enactment of Figure 1, everything
goes in a manner conducive to Rob’s goal sold.

Figure 1: An enactment that achieves Rob’s goals
using Merchant in PURCHASE. Cre is abbreviation for
Create; Req for Request; Dec for Declare. Rob’s life-
line is annotated with its goals as they are supported
(without underlining) and achieved (with underlin-
ing)

Rob acts like this to achieve sold: to achieve paid, he of-
fers cC to customer (by Sem2(v.)); to achieve confirmed, he
requests cB from the bank (by Sem2(iv.)), and to achieve de-
livered he requests cS from the shipper (again, by Sem2(iv.)).
Upon getting Declare(paid) from the customer, Rob forwards
it to the bank for confirmation (by the rule that creditors
must notify debtors of the detach of a commitment [7],
here cB). Rob sends Declare(paidShipping) to the shipper;
the shipper presumably sends Declare(delivered) to the cus-
tomer and forwards the message to Rob (by the rule that
debtors must notify creditors of the discharge of a commit-
ment [7], here cS). Presumably, the bank eventually sends

Declare(confirmed). Thus all of Rob’s goals are achieved.

5. DISCUSSION
In the preceding, we encoded agents and protocols in terms

of goals and commitments respectively, and demonstrated
and formalized the semantic relationship between them. The
formalization is based on the insight that in open multiagent
systems agents would need to either make commitments to
or get them from others in order to meet their goals. We in-
troduced the notion of a protocol-bound agent specification
to express the notion of an agent adopting a role in a proto-
col, and used the relationship to verify if an agent’s goals and
commitments are supported by the specification. In gen-
eral, agents and protocols would be independently specified :
agents would be specified by their stakeholders, and proto-
cols, being reusable, may be available from repositories. A
deployed agent could reason about its own protocol-bound
specification in order to select the right protocol.

In reasoning about protocol-bound specifications, we tied
together the cognitive with the social, the private with the
public, and agent reasoning with communication [20, 18,
12], long-standing concerns of multiagent systems research.
More importantly, given that goals express requirements [5]
and protocols express architectural connections [7], we have
also formally tied requirements with architecture. We con-
clude with a discussion of the literature and some possible
directions for further research.

Singh [20] showed in unequivocal terms that communi-
cation between agents in open multiagent systems cannot
be modeled in terms of cognitive primitives, including goals.
An agent may be designed in any programming language—in
Java, BDI-based, rule-based, and so on; however, its com-
munications would be judged correct based on the fulfillment
of its commitments.

Most approaches for agent reasoning do not consider pro-
tocols as independent artifacts. Dignum et al. [13] consider
how norms and obligations imposed upon an agent impact
agent reasoning. They formalize these concepts in a modal
logic and consider preference orderings over states to reason
about action. In their approach, an agent acts according
to the indicated preferences, possibly choosing to violate
obligations and ignoring norms. An agent may choose to
do that; nonetheless, it is important to understand where
problems could occur—which goals might go unsatisfied and
which commitments may be violated. As an analogy, con-
sider that just because an agent may willfully violate a com-
mitment does not obviate the value of compliance as a cor-
rectness criterion for interactions. Alechina et al. [1] specify
agents in terms of beliefs, goals, and plans. They analyze
agent specifications for correctness in terms of liveness and
correctness with respect to deliberation strategies.

Dastani et al. [10] consider protocols; they check agents
against roles to verify whether agents can enact the roles.
As such, their motivations and the spirit of their approach
are similar to ours. However, they specify roles in terms of
goals, not in terms of commitments, making their approach
less suitable for open multiagent systems.

Prominent AOSE methodologies model interaction via mes-
saging (often as a variant of UML), without considering
high-level abstractions. Tropos [5] supports the derivation
of UML interaction diagrams from requirements expressed
as goals. Gaia [24] emphasizes organization metaphors such
as responsibilities; however those are encoded as procedures.

463

Cheong and Winikoff [6] derive interaction protocols in
terms of action sequences (that are mapped to communica-
tion in the form of messages) from requirements specified as
goals. The goals are at the level of a multiagent system, not
any particular agent’s goals. By contrast, in our approach,
the goals are of a particular agent, and we verify if the role
that the agent wants to play in some chosen protocol is com-
patible with the agent’s goals.

Existing work on protocols and commitments has largely
focused on problems of specification and verification, not on
role adoption by individual agents [15, 4, 2, 3]. Artikis et
al. [2] do consider constraints that an agent must satisfy to
adopt a role; however those are not the same as an agent’s
goals. Winikoff [22] implements reasoning about commit-
ments (such as for detach and discharges), in a BDI-based
agent programming language, and formalized the update re-
lations between beliefs and commitments via inference rules.

Endriss et al. [14] specify protocols and agents declar-
atively in terms of if-then rules, and consider compliance
with such protocols. They do not use any agent-oriented
abstraction in encoding the protocols and agents.

The value of considering commitments in conjunction with
goal models has been noted in [17]. Telang and Singh [21] en-
hance Tropos with a notation and methodological elements
for constructing business models rooted in goals and com-
mitments. Our work expands on the same basic theme by
formalizing some of the notions involved.

Promising directions of future work include devising strate-
gy-computing algorithms for agents (for example, reckless
vs. prudent as mentioned before); treating commitment-
related predicates themselves as goals (such as violated, for
example) and to express preferences over them as in [13];
supporting monitoring of goals and commitments as in [9]
so that agents may revise strategies at runtime in response
to failures or under-performance.

Acknowledgments. This work was partially supported
by FP6-EU project SERENITY contract 27587.

6. REFERENCES
[1] N. Alechina, M. Dastani, B. S. Logan, and

J.-J.Ch.Meyer. Reasoning about agent deliberation. In
Proceedings, KR, pages 16–26, 2008.

[2] A. Artikis, M. J. Sergot, and J. V. Pitt. Specifying
norm-governed computational societies. ACM
Transactions on Computatinal Logic, 10(1), 2009.

[3] M. Baldoni, C. Baroglio, A. K. Chopra, N. Desai,
V. Patti, and M. P. Singh. Choice, interoperability,
and conformance in interaction protocols and service
choreographies. In Proceedings, AAMAS, pages
843–850, 2009.

[4] J. Bentahar, J.-J. Meyer, and W. Wan. Model
checking communicative agent-based systems.
Knowledge-Based Systems, 22(3):142–159, 2009.

[5] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia,
and J. Mylopoulos. Tropos: An agent-oriented
software development methodology. Journal of
Autonomous Agents and Multiagent Systems,
8(3):203–236, 2004.

[6] C. Cheong and M. P. Winikoff. Hermes: Designing
flexible and robust agent interactions. In Handbook of
Research on Multi-Agent Systems: Semantics and
Dynamics of Organizational Models, pages 105–139,
2009.

[7] A. K. Chopra and M. P. Singh. Multiagent
commitment alignment. In Proceedings, AAMAS,
pages 937–944, 2009.

[8] R. Conte, R. Falcone, and G. Sartor. Introduction:
Agents and norms: How to fill the gap? AI and Law,
7(1):1–15, 1999.

[9] F. Dalpiaz, P. Giorgini, and J. Mylopoulos. An
architecture for requirements-driven
self-reconfiguration. In Proceedings, CAiSE, Volume
5565 of LNCS, pages 246–260. Springer, 2009.

[10] M. Dastani, V. Dignum, and F. Dignum.
Role-assignment in open agent societies. In
Proceedings, AAMAS, pages 489–496, 2003.

[11] M. Dastani, J. Hulstijn, F. Dignum, and J.-J. C.
Meyer. Issues in multiagent system development. In
Proceedings, AAMAS, pages 922–929, 2004.

[12] F. Dignum. Autonomous agents with norms. AI and
Law, 7(1):69–79, 1999.

[13] F. Dignum, D. Morley, E. Sonenberg, and L. Cavedon.
Towards socially sophisticated BDI agents. In
Proceedings, ICMAS, pages 111–118, 2000.

[14] U. Endriss, N. Maudet, F. Sadri, and F. Toni.
Protocol conformance for logic-based agents. In
Proceedings, IJCAI, pages 679–684, 2003.

[15] N. Fornara, F. Viganò, M. Verdicchio, and
M. Colombetti. Artificial institutions: A model of
institutional reality for open multiagent systems. AI
and Law, 16(1):89–105, 2008.

[16] K. V. Hindriks and M. B. van Riemsdijk. A
Computational Semantics for Communicating
Rational Agents Based on Mental Models. In
Proceedings, ProMAS Workshop, 2009.

[17] A. U. Mallya and M. P. Singh. Incorporating
commitment protocols into Tropos. In Proceedings,
AOSE 2005 Workshop, volume 3950 of LNCS, pages
69–80. Springer, 2006.

[18] J. Pitt and A. Mamdani. A protocol-based semantics
for an agent communication language. In Proceedings,
IJCAI, pages 486–491, 1999.

[19] R. Sebastiani, P. Giorgini, and J. Mylopoulos. Simple
and minimum-cost satisfiability for goal models. In
Proceedings, CAiSE, Volume 3084 of LNCS, pages
20–35. Springer, 2004.

[20] M. P. Singh. Agent communication languages:
Rethinking the principles. IEEE Computer,
31(12):40–47, 1998.

[21] P. R. Telang and M. P. Singh. Enhancing Tropos with
commitments: A business metamodel and
methodology. In Conceptual Modeling: Foundations
and Applications, Volume 5600 of LNCS, pages
417–435, Springer, 2009.

[22] M. Winikoff. Implementing commitment-based
interactions. In Proceedings, AAMAS, pages 1–8, 2007.

[23] P. Yolum and M. P. Singh. Flexible protocol
specification and execution: Applying event calculus
planning using commitments. In Proceedings,
AAMAS, pages 527–534, 2002.

[24] F. Zambonelli, N. R. Jennings, and M. Wooldridge.
Developing multiagent systems: The Gaia
methodology. ACM Transactions on Software
Engineering Methodology, 12(3):317–370, 2003.

464

